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This Work Tests the Dependence of the Bootstrap Current 
on Choice of Target Safety Factor (q) Profile 

Important for Achieving Steady-State Development Goals 

•  Fully noninductive operation with a high bootstrap current 
fraction  fBS~βP~qβN 

•  Avoid local noninductive “overdrive” JBS+JAUX>JTOTAL 
incompatible with steady-state 

•  Achieve sufficient fusion gain G~βNH89/q95
2  (G=0.3 for ITER 

Q=5 operation)    

•  Conventional approach has been to maximize qmin and βN 
with q95 set by a trade-off with G 
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There is a Recursive Relationship Between Target q-Profile 
and JBS at high fBS  

shear •  Limits our ability to 
predict JBS 

•  Experiment 
designed to vary q 
and measure 
resulting profiles 
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Experiment Produced Nine Different q-Profiles With 
qmin≈1.1, 1.5, 2 and q95 ≈ 4.5, 5.5, 6.5 

•  q95 adjusted by IP at fixed BT 

•  First scan at fixed βN=2.8 and second scan pushed βN to 
maximum limited by stability or confinement 

•  Measured q, density and temperature profiles 

•  Calculated Bootstrap Current Density using ‘99 Sauter Model in 
ONETWO  

•  Compared measured quantities averaged over few hundred to 
~1000 ms for better statistics  
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q-Profile Variation at βN=2.8 Lead to Systematic 
Differences in Measured Density and Temperature  

•  At low q95 

 - ne, Te and Ti 
generally higher 

•  At low qmin 

 - ne higher and 
more peaked 

 - Te more peaked 

 - Ti lower 

q95


4.5
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qmin
 2
 136837
 136835
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 136853




C. Holcomb APS/DPP 2008 

At βN=2.8, the Bootstrap Fraction Increases With q95 
As Expected From fBS~qβN 

•  Bootstrap Fraction 
leveled off or 
dropped with qmin 
above ~1.5 

•  This is contrary to 
expected qβN 
scaling 
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Increased Stability at Lower qmin Resulted in 
Highest Achieved βN and fBS Occurring at qmin ≈ 1.1 

Lowest qmin, q95≈6.8 discharge had 
~10% higher H89 than all others 
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Increasing βN Broadens JBS By Increasing ∇Te and 
∇Ti at Larger Radius 

JBS (A/cm2) 
dne/dρ (1019m-3/m)  

dTe/dρ (kV/m)  dTi/dρ (kV/m)  

ρ
 ρ


•  This example: 
q95=5.6, qmin≈1.5 

 βN ≈ 2.8, 3.6 

•  Similar broadening 
with βN for all q-
profiles 

•  Broadening 
favorable for 
avoiding local 
noninductive current 
overdrive near ρ~0.2 

•  dne/dρ change with 
βN not clearly 
systematic with q
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Extrapolating to the n=1 Ideal Wall βN Limit 
Suggests fBS Maximizes Near qmin≈1.5 

•  Used measured fBS/βN to 
scale fBS to ideal wall limit 

 (L, H, IW refer to cases with 
βN=2.8, maximum, 
calculated ideal wall) 

•  Accounts for density and 
temperature profile scaling 
with βN 
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Lower fBS at qmin ≈ 2 Caused Mostly By Lower 
Density and Lower Temperature Gradients* 

•  q95=6.8, scan of 
qmin≈2, 1.5, 1.1 

•  βN pushed to 
maximum 

•  In each row, 
first two 
quantities are 
leading scale 
factors of 
bootstrap terms 
in 3rd column 

  * 
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qmin≈2 Had Higher Measured Density Fluctuations 
and Calculated Growth Rates Than qmin≈1.1 

qmin≈2 
q95=6.8 
βN=2.8 

qmin≈1.1 
q95=6.8 
βN=2.8 

•  kθ<1 cm-1FIR scattering 
measurement of ñ higher 
amplitude at qmin≈2 

•  Linear TGLF runs show qmin≈1.1 
was basically stable, qmin≈2 
unstable to ITG type turbulence 
at mid-radius (consistent with 
measurements)   
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Summary and Conclusions 

•  In our scans of qmin and q95, the bootstrap current fraction increased 
with q95 but did not continue to increase with qmin above about 1.5 as 
expected by fBS~qβN 

•  With existing control tools, qmin≈1.5 appears optimal for maximizing 
bootstrap current if the calculated ideal wall limit can be reached 
(only narrowly more so than qmin≈1.1) 

•  qmin≈2 discharges achieved lower βN and calculated n=1 βN limits, 
had increased transport, lower density, lower temperature gradients, 
and as a result did not produce as much bootstrap current 

•  Highest fBS achieved at highest q95 (=6.8), but scan suggests lower q95 
is required for more reactor relevant fusion gain G~βNH89/q95

2  

•  New tools (off-axis NBI, more ECCD) may allow access to higher βN 
limits and higher bootstrap fractions 


